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Abstract
We study finite energy topologically stable static solutions to a global
symmetry-breaking model in 3 + 1 dimensions described by an isovector scalar
field. The basic features of two different types of configurations are studied,
corresponding to axially symmetric multisolitons with a topological charge n
and unstable soliton–antisoliton pairs with a zero topological charge.

PACS numbers: 11.10.Lm, 11.27.+d

1. Introduction

The familiar solitons in 3 + 1 spacetime dimensions are the monopoles [1] of the Yang–Mills–
Higgs (YMH) model and the Skyrmions [2] of the O(4) nonlinear sigma model. The first of
these [1] is a solution of a gauged scalar (Higgs) field model, while the second [2] is not related
to a gauge field. But this is not a very strict distinction, since it is also possible to find solitons
of the SO(3) gauged O(4) nonlinear sigma model [3]. These are all models that pertain to
physically rather different contexts but are nonetheless closely related inasfar as they are all
classical field theories whose static energies are bounded from below by topological charges.
On this rather technical level therefore, one can ask whether there might be an ungauged
Higgs analogue of the (ungauged) Skyrme soliton? We refer to such a symmetry-breaking
field theory, as a Goldstone model in 3 + 1 dimensions.

It is known on the other hand that such models do exist [4] not just in 3 + 1 but in all
dimensions. These are the gauge-decoupled versions of the SO(D) gauged Higgs models [5]
in D + 1 spacetime dimensions. That such models should support solitons follows from the
simple fact that certain truncated versions of these have such solutions in closed form [6]. The
solitons of these models have the salient feature that the asymptotic behaviour of their solitons
feature the same properties as gauged Higgs models, and hence afford a simple background
for the study of Dirac equations [7] in all dimensions.
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While the existence of solitons to generic such Goldstone models were known for
sometime, a concrete and detailed construction of these has not been presented in the literature
to date. This is what we propose to do in this paper, and since 3 + 1 is physically the most
relevant dimension, we have chosen this for our example. The solitons we construct are in
a sense alternatives to the usual Skyrmions, though we have not pushed this analogy here.
Our strategy here is instead to expose the generic properties of such solitons. To this end,
we construct the topological charge-1 spherically symmetric soliton, the axially symmetric
winding number n multisolitons (MS) and examine the possibility of the existence of bound
states. We also construct an (axially symmetric) topological charge-0 soliton–antisoliton
(SAS) pair, to highlight the analogy of the model studied with the usual YMH model.

In section 2 we define the flat space energy density functional of the model and the
topological charge density presenting its lower bound. In section 3 we present the charge-1
solitons, the charge-n MS and the charge-0 SAS pairs, in successive subsections respectively,
and in section 4 we summarize our results.

2. The model and the topological charge

The symmetry-breaking model in three spatial dimensions, to which we refer as a Goldstone
model, is described by a scalar isovector field φa, a = 1, 2, 3. There is such a hierarchy
of models [4] that arise from the gauge decoupled limit of the three-dimensional SO(3)

gauged Higgs model descended from the pth member of the Yang–Mills (YM) hierarchy on
R3 × S4p−3. Here we have chosen the simplest of these, namely that descended from the 2nd
member of the YM hierarchy. Using the notation

φa
i = ∂iφ

a, φab
ij = ∂[iφ

a∂j ]φ
b, φabc

ijk = ∂[iφ
a∂jφ

b∂k]φ
c,

with the brackets [ij . . .] implying total antisymmetrization, the static energy density functional
is

E (p=2) = λ0(η
2 − |φa|2)4 + λ1(η

2 − |φb|2)2
∣∣φa

i

∣∣2
+ λ2

∣∣φab
ij

∣∣2
, (1)

which implies a total mass M = 1/(4π)
∫
E dV.

All the dimensionless constants λ0, λ1 and λ2 must be positive if the topological lower
bound to be introduced below is to be valid. Moreover, any of these constants can also vanish,
provided that the absence of the corresponding term in (2) does not violate the Derrick scaling
requirement. That soliton solutions to this model exist is obvious since for particular choices
of these dimensionless constants explicit solutions [6] are known. Pushing our freedom of
choosing the numerical values of λ0, λ1 and λ2 further, we can add any other positive definite
term to (1) multiplying a new dimension dimensionless coefficient, as long as the scaling
properties remain satisfied. In three spatial dimensions, there is one such possible kinetic
term for which a canonical momentum field exists, and that is the sextic term4. Thus the most
general model we can consider is the following extension of (1)

E = λV (η, |φa|) + τ

[
(η2 − |φb|2)2

∣∣φa
i

∣∣2
+

1

4

∣∣φab
ij

∣∣2
]

+
κ4

36

∣∣φabc
ijk

∣∣2
, (2)

τ and λ being dimensionless constants, κ is with dimension of length and V (η, |φa|) a generic
symmetry-breaking potential.

It is perhaps in order to point out that (2) is an ad hoc model, rather than a dimensionally
descended model like (1). Indeed, a sextic term does appear in the next one to (1)

E(p=3) = λ0(η
2 − |φa|2)6 + λ1(η

2 − |φb|2)4
∣∣φa

i

∣∣2
+ λ2(η

2 − |φb|2)2
∣∣φab

ij

∣∣2
+ λ3

∣∣φabc
ijk

∣∣2
, (3)

4 The corresponding sextic term in the Skyrme model was considered in [8] in some detail.
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descended from p = 3 YM, with which we are not concerned. We will restrict our attention
to (2), and mainly to the particular case where λ = κ = 0, which like the Skyrme model
captures the main qualitative features of the soliton.

The model (2) has certain remarkable similarities to the Skyrme [2] model, and other
properties that differ fundamentally. On the similarity side, there is the obvious shared feature
of the scaling of the distinct terms in both three-dimensional models. Also, for the important
special case with λ = κ = 0, the Bogomol’nyi equations are overdetermined like in the
Skyrme model and there exist no solutions saturating the Bogomol’nyi bound.

On the contrasting side, the order parameter field φa here is a relic of a Higgs field and
has the same dimensions (L−1) as a connection, and the finite energy conditions require the
symmetry-breaking boundary condition

lim
r→∞ |φa| = η. (4)

For the (more standard) case of multisolitons centred at the origin, the boundary condition
there is

lim
r→0

|φa| = 0. (5)

For the unit charge spherically symmetric soliton, when the system is described by a
single function h(r), the conditions (5) and (4) (see (10) below) result in the monopole
like asymptotics of our solitons, which are qualitatively different from the instanton-like
asymptotics of the Skyrmions5.

It is straightforward to show that (2) is bounded from below by the density

� = 1

4π
εijkε

abc(η2 − |φd |2)φa
i φb

j φ
c
k

= 1

4π
εijkε

abc∂i

[(
η2 − 3

5
|φd |2

)
φaφb

j φ
c
k

]
(6)

whose volume integral is the topological charge, which is just the winding number.
Models like (1), (2) and (3) support global monopoles in the sense that their topological

charges are the winding numbers of the scalar (Higgs) field on the 2-sphere at infinity. These
solitons however have finite energy, unlike the usual global monopoles. This is due to two
reasons. First, we have included the quadratic kinetic term to satisfy the required scaling, and
second, we have employed a non-standard quadratic kinetic term which decays fast enough
to satisfy finite energy requirements. These two features are guaranteed by the fact that
these models are dimensionally descended from higher-dimensional Yang–Mills models, the
latter being endowed with the corresponding topological properties, as explained in [4] and
references therein.

While we are exclusively concerned with the classical properties of the model (2) here,
it is nevertheless interesting to comment on its possible quantum aspects. It is believed that
the Skyrme model is a reliable approximate theory of the nucleons [9] and our model shares
many similarities with the latter. The main difference between the models is that while the
Skyrme field is a constrained field and hence the procedure of quantization must take account
of the constraint, the order parameter field in our model is unconstrained. On the other

5 The values of the scalar Higgs function of a unit charge monopole on the boundaries [r = 0, r = ∞] are
[h(0) = 0, h(∞) = 1]. The values of the scalar function w(r) of the spherically symmetric Yang–Mills (YM)
instanton on the boundaries [r = 0, r = ∞] are [w(0) = ±1, w(∞) = ±1]. The one-dimensional reduced
action density of the scale invariant YM system in 4p dimensions is proportional to the corresponding O(2p + 1)

sigma model reduced action in 2p dimensions, described by the function f (r) ≡ arccos w(r). Hence the values
of the scalar function cos f (r) of the unit charge sigma model soliton on the boundaries [r = 0, r = ∞] are
[cos f (0) = ±1, cos f (∞) = ±1], like an instanton.
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hand, the quadratic kinetic term in (2) is quite unconventional, featuring the field-dependent
factor (η2 − |φb|2)2. The effect of the latter is to prevent the definition of a propagator, this
difficulty of quantization replacing the constraint problem in the Skyrme model. But it is also
well known that the most efficient practical method of quantizating Skyrme theory is that of
collective coordinate quantization, employed in [9]. This method applies is equally well to
the system (2), subject to making the essential change of field coordinates

φa → 
 = φaτa,

τa being the three Pauli matrices.

3. The solitons

Our aim in this section is to demonstrate the close similarities of the solitonic solutions in this
model, with the various monopole (and dipole) solutions of the YMH model. The section
is divided into three subsections. The first involves the charge-1 soliton analogous to the
‘t Hooft–Polyakov monopole [1]. The second is concerned with axially symmetric solutions
satisfying standard boundary conditions, with an arbitrary winding number n, namely the
multisolitons (MS) of this model. A question of interest raised in this subsection is that of the
mutual attraction or repulsion two 1-solitons. In the last subsection we impose those boundary
conditions on the axially symmetric fields, which result in zero charge (unstable) solutions
representing soliton–antisoliton (SAS) pairs situated at the symmetry axis. These boundary
conditions are those employed in [10, 11] for the corresponding SO(3) YMH model.

3.1. Charge-1 soliton: spherically symmetric

Subjecting (2) to spherical symmetry via the ansatz

φa = ηh(r)x̂a, (7)

and taking into account the factor r2 in the volume element, the reduced one-dimensional
energy functional, after some rescalings, is

E = λη−2r2V (η, h) + τη6

[
(1 − h2)2(r2h′ 2 + 2h2) +

h2

r2
(2r2h′ 2 + h2)

]
+ (ηκ)4 h4

r2
h′ 2. (8)

Mostly, we will retain only the terms multiplying τ . In that case the lower bound on the
integral of (8) is

Q =
∫

� d3x = 6
∫ ∞

0

d

dr

(
h3

3
− h5

5

)
dr. (9)

Substituting into the limits of the definite integral (9), the asymptotic values

lim
r→0

h(r) = 0, lim
r→∞ h(r) = 1 (10)

following from (5) and (4), one finds

Q = 4

5
which was verified numerically. The solutions of the field equation can be constructed
numerically. We follow the usual approach and, by using a standard ordinary differential
equation solver, we evaluate the initial condition

h = br − b3

5(b2 + 2)
r3 + O(r5)
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Figure 1. The profiles of the function h(r) and the mass-energy E(r) of typical spherically
symmetric solutions are shown for several values of κ .

at r = 10−6 for global tolerance 10−14, adjusting for fixed shooting parameter and integrating
towards r → ∞. The behaviour of finite energy solutions as r → ∞ is

h ∼ 1 + c e−2r − 1

4r2
− 15

32r4
+ O(1/r6),

where c is a free parameter. For all considered cases, solutions with the correct asymptotics
occurs only when the first derivative of the scalar function h(r) evaluated at the origin,
h′(0) = b, takes on a certain value. For example b ∼ 0.443 613 for a model without a sextic
term (κ = 0), while b ∼ 0.367 479 for κ = 10 (the symmetry-breaking potential is vanishing
in both cases).

The profiles of typical solutions are presented in figure 1 for several values of the parameter
κ and no symmetry-breaking potential. The energy functional, as given by (8) is also exhibited.
No multinode radial solutions were found, although we have no analytical argument for their
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absence. However, our preliminary numerical results indicate that, similar to the case of
monopoles and sphalerons, the gravitating Goldstone model also presents radial excitations
with an arbitrary number of nodes of the function h(r). A study of these solutions will be
presented elsewhere.

3.2. Charge-n multisoliton: axially symmetric MS

The axially symmetric ansatz for the scalar field

φa = (φα, φ3)

is

φα = ηϕ1(ρ, z)nα, φ3 = ηϕ2(ρ, z), (11)

where ρ2 = |xα|2 = x2
1 + x2

2 , z = x3, denoting xi = (xα, x3), and nα is the unit vector

nα = (cos nφ, sin nφ) (12)

with an azimuthal winding n.
We denote the two functions (ϕ1, ϕ2) ≡ ϕA by labelling ϕA with A = 1, 2. Subjecting

(2) to (11), the λ = 0 system reduces to

E = 2πρ

{
τ 2

1 η6(1 − |ϕB |2)2

[
(|∂ρϕA|2 + |∂zϕA|2) +

(
nϕ1

ρ

)2
]

+ τ 2
2 η4

[
(εAB∂ρϕA∂zϕB)2 +

(
nϕ1

ρ

)2

(|∂ρϕA|2 + |∂zϕA|2)
]

+ κ4η6

(
nϕ1

ρ

)2

(εAB∂ρϕA∂zϕB)2

}
, (13)

which in terms of the more useful variables (r, θ) is

E = 4πη6τ 2
1 sin θ

{
(1 − |ϕB |2)2

[
(r2|∂rϕA|2 + |∂θϕA|2) +

n2ϕ2
1

sin2 θ

]

+

(
τ2

τ1η

)2 [
(εAB∂rϕA∂θϕB)2 +

( nϕ1

r sin θ

)2
(r2|∂rϕA|2 + |∂θϕA|2)

]

+

(
κ2

τ1

)2 ( nϕ1

r sin θ

)2
(εAB∂rϕA∂θϕB)2

}
, (14)

and rescaling r as

τr ≡
(

τ2

τ1η

)
r → r (15)

removes the coupling constant in front of the quartic term.
For the multisoliton (MS) solutions at hand, the boundary values of the functions ϕA in

the r � 1 region are

lim
r→∞ ϕ1(r, θ) = sin θ, lim

r→∞ ϕ1(r, θ) = cos θ, (16)

while at the origin we find

ϕ1|r=0 = ϕ2|r=0 = 0. (17)

Since our imposition of axial symmetry requires also the z → −z reflection symmetry, the
actual (numerical) integration needs to be performed only over the range 0 � θ � π

2 . The
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Figure 2. A three-dimensional plot of the mass-energy E(r, θ) of a n = 2, κ = 0 axially symmetric
MS solution.

field equations have been solved by imposing the following boundary conditions along the
axes:

ϕ1|θ=0 = ∂θϕ2|θ=0 = 0, ∂θϕ1|θ=π/2 = ϕ2|θ=π = 0. (18)

We solve numerically the set of two coupled nonlinear elliptic partial differential equations
arising from the variation of the functional (14), subject to the above boundary conditions,
employing a compactified radial coordinate x = r/(1 + r). To obtain axially symmetric
solutions, we start with the n = 1 solution discussed above as initial guess (corresponding to
ϕ1 = h(r) sin θ, ϕ2 = h(r) cos θ ) and increase the value of n slowly. The iterations converge,
and repeating the procedure one obtains in this way solutions for arbitrary n. The physical
values of n are integers. The typical numerical error for the functions is estimated to be lower
than 10−3. The numerical calculations for n > 1 were performed with the software package
CADSOL/FIDISOL, based on the Newton–Raphson method [12]. In figure 2 we show the
local mass energy as given by (14) of the κ = 0 n = 2 MS solution as a function of the
coordinates z = r cos θ and ρ = r sin θ . In figure 3 the profiles scalar functions ϕ1 and ϕ2 of
the same solution are shown for several angles as a function of the radial coordinate r.

The analysis was carried out in the first place setting the constant κ = 0 and for several
values of n, which captures the main qualitative properties of the MS. The maximum of
the mass-energy density (14) moves outwards with increasing n. However, for n > 3, the
numerical errors start to increase, and for some nmax the numerical iterations fail to converge.
The problem resides in the behaviour of the scalar function ϕ2, which for large n, tends to
develop a discontinuity for some value of the radial coordinate.

Because of the close analogy between our model and the Skyrme model, it is worthwhile
checking one of the remarkable properties of axially symmetric multi-Skyrmions. The property
in question is that up to vorticity (≡baryon number) n = 4 the energy of the multi-Skyrmion
is smaller than that of n infinitely separated 1-Skyrmions, i.e. that the MS can be regarded as
a bound state [13].

We have here checked that starting from n = 2, and up to n = 5, the energies of the n-MSs
of our model are greater than that of n 1-solitons. Moreover it turns out that this deficit of
binding energy increases with increasing n, indicating that none of the MSs in this model can be
regarded as bound states. For example we have found M(n = 2)/(2M(n = 1)) − 1 = 0.229,
M(n = 3)/(3M(n = 1)) − 1 = 0.381 while M(n = 4)/(4M(n = 1)) − 1 = 0.492 (where
M(n = 1) = 1.188).
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Figure 3. The profiles of the scalar functions ϕ1 and ϕ2 are shown for the n = 2, κ = 0 axially
symmetric MS solution.

It is for this reason that we have introduced the sextic6 term in (14), to check whether
its presence may reverse this trend and lead to MS bound states? However, we find that for
0 � κ � 10, MSs with charges up to 3 the deficit of binding energy persists and increases
with n, confirming that like-charged solitons of this model are mutually repulsive in spite of
the model having descended from the gauge decoupling of Higgs models [14, 15] supporting
mutually attracting monopoles of like charges.

3.3. Charge-0 soliton–antisoliton: axially symmetric SAS

For simplicity we will restrict to winding number 1 SAS solutions, whence we set n = 1 in
the ansatz (11).

6 The presence of higher-order terms in the (covariant) derivatives of the Higgs field is known to result in the mutual
attraction of like-charged (monopoles) solitons [14, 15].
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Figure 4. A three-dimensional plot of the mass-energy E(r, θ) of an n = 1, κ = 0 axially
symmetric SAS solution.

The reduced two-dimensional energy density functionals (13) and (14) are unchanged
for the SAS solutions. Also the boundary conditions (17) arising from the requirements of
analyticity on the z-axis and at the origin, remain unchanged. What are different between the
MS and SAS solutions are the boundary conditions at r → ∞ and at r = 0.

For the SAS solutions in the region r � 1, instead of (15) we require

lim
r→∞ ϕ1(r, θ) = sin mθ, lim

r→∞ ϕ1(r, θ) = cos mθ, (19)

with m � 2 for SAS chains analogous to the monopole–antimonopole chains [16]. But we
are here only interested in SAS pairs; therefore we restrict to m = 2 in (19).

For the SAS in the region r � 1, instead of (17) we require

ϕ1|r=0 = 0, ∂rϕ2|r=0 = 0. (20)

The field equations have been solved by using the same methods employed in the MS case.
However, the SAS solutions exhibit a very different picture. The energy density ε = −T t

t

possesses maxima at z = ±d/2 and a saddle point at the origin, and presents the typical
form exhibited in the literature on MA solutions [10]. The modulus of the scalar field
|ϕ| =

√
ϕ2

1 + ϕ2
2 possesses always two zeros at ±d/2 on the z-symmetry axis. In figures 4 and

5 we plot the mass energy (14) and the modulus of the scalar field of a typical m = 2 solution
as a function of the coordinates ρ, z, for κ = 0 (i.e. no sextic term). This solution has a mass
M = 2.588 which is smaller than that of two (n = 1,m = 1) 1-solitons (M = 2.92), similar
to the sphaleron describing a monopole–antimonopole pair [10] .

4. Summary

We have studied the finite energy topologically stable static solutions to a (global) symmetry-
breaking model in 3 + 1 dimensions described by an isovector scalar field. Such models can
be constructed in arbitrary D + 1 dimensions since they are the gauge decoupled versions of
Higgs models in all dimensions. We have chosen here D = 3 examples, since this is the
dimensionality of most physical interest, like the usual Skyrme model, but very different from
the latter in many essential respects.

Two classes of solutions are studied: axially symmetric multisolitons (MS) with a
topological charge n, and unstable soliton–antisoliton (SAS) pairs with a zero topological
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Figure 5. The modulus of the scalar field |ϕ| =
√

ϕ2
1 + ϕ2

2 is shown for the n = 1, κ = 0 axially
symmetric SAS solution.

charge, both with finite energies. There are two pertinent questions that arise here. In the
case of the MS solutions, the question is whether solitons of like charge attract or repel, and
it was found that they always repel, even when the model is augmented with a sextic kinetic
term. In the case of the SAS pairs, the question is whether they can support a nonzero angular
momentum7? This task is deferred to some future work, and presumably it will involve a
stationary Q-ball-like features.

As a scalar theory supporting soliton solutions in 3-space dimensions this model is like
the Skyrme model. Unlike the latter however this is a symmetry-breaking model, as a result
of which the boundary values of the field are akin to that of a monopole rather than that of
an instanton as is the case for the Skyrme (nonlinear sigma) model. From the viewpoint of
physical properties, there is no question that it can be regarded as an alternative for the Skyrme
model which is known to give a good description of nucleons [9] at low energies. This can
be seen from two clear viewpoints: (i) the fact that Skyrmions are capable of forming bound
states [13] describing exotic states, while the MSs of our model display the opposite property,
and (ii) because the Skyrmion can be gauged with the (Maxwell) U(1) field [19, 20] enabling
the description of the electromagnetic properties of the nucleons, while the topological lower
bound on the energy of our MS is invalidated when the scalar field is gauged with U(1). This
is because Higgs models, from the p = 2 member of which [5] the present model is extracted,
can be gauged only with SO(D), or, be completely gauge decoupled as the model considered
here. While it is true that a O(D + 1) sigma model in D dimensions can be gauged with all
SO(N) with N � D [19] with its energy bounded from below by a gauge invariant topological
charge, gauging Higgs models [5] with SO(N) with 1 < N < D causes the collapse of the
topological lower bound on the energy.

Technically the properties of the model studied here are analogous to those of the usual
SU(2) Higgs model with symmetry-breaking potential supporting monopoles [1]. Like in
that case, the Bogomol’nyi bound cannot be saturated, and, like-charged solitons repel in the
sense that an (n axially symmetric) multisoliton of charge n has higher energy than n infinitely
separated 1-solitons. (It is possible that solutions with less than axial symmetry may have
lower mass than the axially symmetric ones studied here, so the possibility exists that such
solutions may form bound states, however unlikely.) Another point in this analogy is that the

7 The corresponding rotating solutions in the YMH model have been studied recently in [17] and [18].
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sphaleron describing soliton–antisoliton pairs here is lighter than two 1-solitons, just as it is
in the Higgs case [10].
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